Research

We are active in two major research areas: 1) the investigation of complex dynamic networks based on non-covalent bonds, dynamic covalent reactions and dissipative reaction cycles; 2) the synthesis of functional organic materials for applications in organic electronics, spintronics and energy conversion.
In the area of systems chemistry, we investigate dissipative reaction networks. We aim to develop new reaction cycles, to couple several such cycles to one another, to design new 3D-printed flow reactors and to use computer-aided design in their optimization. We also explore and utilize new dynamic covalent reactions (e.g. orthester exchange) and use privileged binding motifs (e.g. amidinium ions, fluorinated cyclohexanes) to generate mechanically interlocked architectures or supramolecular polymers. Read more here.
In the area of functional organic materials, we synthesize highly strained macrocand utilize their supramolecular chemistry to achieve site-selective functionalization reactions of fullerenes and to achieve defect-free solution-processing of carbon nanotubes. We also synthesize (organic) materials and develop new concepts for organic photovoltaics, photocatalysis, battery science and quantum information processing. Read more here.
Research Highlights
Publikationen

(Press release in English and German; Highlighted on the journal front cover and in C&EN, Chemistry Views, Nanowerk, ChemEurope, Laborpraxis, ChemistryCommunity; Animated Gif by Agustí Lledó)
[nsbp]

(Highlighted in Nature Chemistry, Nachrichten aus der Chemie, Der Standard, Nürnberger Nachrichten, Nürnberger Zeitung, Der Fränkische Tag, Innovations Report)
[nsbp]